
Performance Testing Web 2.0

1

Stuart Moncrieff (Load Testing Guru)

www.jds.net.au / www.myloadtest.com

Foundations of Web 2.0 (a history lesson)

• 1993

– The National Center for Supercomputing
Applications releases Mosaic, which would
become the first popular graphical web browser.

• 1995

– Microsoft licenses Mosaic from Spyglass as the basis for

2

– Microsoft licenses Mosaic from Spyglass as the basis for
Internet Explorer 1.0. Spyglass signs a deal to collect a royalty
for every copy of the browser software that Microsoft sells.
Microsoft gives the browser away for free.

– Netscape Navigator 2.0 released with support for JavaScript
(invented by Netscape) and Java Applets. Java immediately
develops a reputation as a “slow” language as Java applets
perform poorly even on Intel’s brand new 200 MHz Pentium Pro
CPU.

Foundations of Web 2.0 (a history lesson)
• 1996

– July: Hotmail is launched, providing an example of a desktop
application being replaced by a browser-based application.

– August: Internet Explorer 3.0 released, with support for ActiveX,
frames and JScript.

– November: Macromedia Flash 1.0 released.

• 1998

3

• 1998

– XML 1.0 becomes a W3C recommendation (like HTML, it is a
recommendation, not a standard).

• 1999

– March: IE 5.0 is released with the first implementation of
XMLHttpRequest(), which allows HTTP requests to be made
without refreshing the entire web page. Microsoft intends this to be
used by the Outlook 2000 web client.

– July: RSS 0.91 released, makes content syndication easy

Foundations of Web 2.0 (a history lesson)

• 2000

– August: Flash Player 5 is released, supporting ActionScript
1.0.

– September: Web Services Description Language (WSDL) 1.0
developed by IBM, Microsoft, and Ariba to describe web
services for their SOAP toolkit.

4

services for their SOAP toolkit.

• 2005

– February: Google Maps released, providing a great example of
Ajax in action – as the user drags the map, the grid squares are
downloaded from the server and inserted into the page; the
page is not reloaded.

– April: First video uploaded to YouTube, which uses Flash to
deliver streaming video to users without requiring them to install
a separate video codec or player.

Foundations of Web 2.0 (a history lesson)

• 2006

– May: Google Releases the Google Web Toolkit (GWT),
allowing developers to develop applications in Java, and then
cross-compile it to JavaScript to run in a web browser.

– July: RFC 4627 released, defining JSON (JavaScript Object
Notation), an alternative to SOAP.

5

Notation), an alternative to SOAP.

• 2007

– April: Microsoft releases Silverlight as an alternative to Flash.

• 2008

– December: Sun releases JavaFX 1.0 as an alternative to Flash.

What is Web 2.0?*

6

* A buzzword coined by Tim O’Reilly in 2004 :)

�Web 2.0
tag cloud

Web 2.0 – things a load tester cares about

• Rich Client – web browser as an application platform

– Ajax

– Flash, Silverlight, JavaFX, Java Applets, ActiveX components

– JavaScript-based toolkits and widgets (Dojo, jQuery, GWT,
Pyjamas)

7

• Consumable API

– Easy syndication (RSS, Atom)

– Web Services (REST, SOAP/XML, JSON)

Web 2.0 – Consequences for load testers
• Rich client

– It becomes far more difficult to create automated scripts for load
testing. Consequences for scripting time, and required skill level.

– End-user response times can now include significant client-side
time, which load testing tools do not measure.

• Consumable API

8

– Usage patterns more unpredictable due to automated requests
to your API. Badly behaved consumer applications may cause
problems.

• Example: popular Australian e-commerce site. High website usage
could cause outage for call centre.

• Limit exposure through system architecture. Define upper limit
through policy enforcement

– Opportunity to test/tune components of “composite” applications
separately before testing the system as a whole.

• Example: Amazon.com’s redesign to a SOA architecture

Web load test scoping questions

• Standard questions

– Number of business processes in scope

– Expected number of concurrent users and peak hour transaction
rate for each business process

– System architecture (how many servers, what is on each server,
what software components)

9

what software components)

• New question

– Does it use Ajax or rich client components like Java applets, or
ActiveX objects?
(will require a short Proof-of-Concept before providing an
estimate)

Top 12 .com.au websites (by traffic)

Site Ajax? API? Non-static Flash?

google.com.au Yes Public

ebay.com.au Yes Public

ninemsn.com.au Yes Video streams

news.com.au Yes RSS Video streams

realestate.com.au

10

realestate.com.au

smh.com.au Yes Video streams

commbank.com.au

bom.gov.au

abc.net.au RSS Video/audio streams, navigation

theage.com.au Yes Video streams

seek.com.au Yes Private Yes

bigpond.com Yes Video streams, some navigation

How load testing tools work: Recording

• Record HTTP traffic as user steps through a business
process.

R
e
c
o
rd

in
g

P
ro

x
y

11

R
e
c
o
rd

in
g

�physical

Interface

�mouse clicks

�keystrokes

�browser
events

�client-side
code

�HTTP �HTTP

�server-side
code

�TCP

�IP

�Ethernet

How load testing tools work: Generation

• Script is generated from recording log

• Provides a programming API that simplifies creation of
HTTP requests

• Provides a scripting language for logic/flow control and
modification of HTTP requests

12

modification of HTTP requests

How load testing tools work: Modification

• Parameterise inputs

• Correlation – capture values from server response to be
used in next HTTP request

Correlation example: Cancel Open Order

Request Login page →
Client Server

13

Request Login page →

← Login page (JSESSIONID)

Login. {Usename}, {Password}, (JSESSIONID) →

← Success

Request Display Orders page (JSESSIONID) →

← Order Numbers page

← Success

Cancel Order. (Order number) (JSESSIONID) →

Find first
order with
status=open

How load testing tools work: Replay
• Replay engine sends and receives HTTP traffic (based

on script).

• Browser is not involved. Nothing displayed on screen.

• Hundreds of virtual users per computer.

• Response times measure server and network time, not
client-side performance.

14

client-side performance.

real

users

load generator

Ajax example: seek.com.au

15

Ajax example: seek.com.au (JSON)

16

Why is this a problem?

• Complex processing on the client side can make
correlation really difficult

– In Seek example, it is necessary to re-implement client-side
processing of JSON objects.

– This increases the script development phase of your
performance testing cycle.

17

performance testing cycle.

– This restricts the number of people who are able to create
scripts (due to higher level of technical ability required).

Next-generation load testing tools

• Moving up the software stack.

• From HTTP level to browser event level

• A “high level” script that executes client-
side code and triggers browser events
e.g. onLoad, onClick

GUI

Browser events

18

e.g. onLoad, onClick

• Does not render GUI, so many virtual
users can be run on a single load
generator.

• But requires more memory and CPU per
virtual user than an HTTP-based script.

HTTP

TCP/IP

Current vs. next-generation tools

19

Client-Side Performance

• Was not a problem previously, as client-side time is
trivially small for traditional web applications.

– Client-side processing time can now exceed server + network
time by a factor of 5 for some applications.

• JavaScript profiling (FireBug Profiler)

20

• Memory leaks and overconsumption

– Watch out for JavaScript allocating large amounts of memory

Summary

• Glossed over…

– Include questions about Web 2.0 technologies in your
performance testing scoping phase.

– Usage profiles are more difficult to predict with external
consumers. Limit upper boundary using Policy Enforcement.

– If you have a composite application, use the opportunity to
performance test components independently.

21

performance test components independently.

• Focused on…

– Next generation load testing tools which operate at a higher
level than HTTP will simplify and shorten the scripting phase.

– Client-side performance and resource usage/leakage must now
be tested for.

• Leverage load testing tools which handle Flash etc.

– Don’t just pick a load testing tool at random.

